Przemiennik częstotliwości jest układem elektronicznym, który pozwala na płynną regulację prędkości trójfazowych silników prądu przemiennego przez zmianę częstotliwości napięcia zasilania. Od powstania pierwszych przemienników częstotliwości opartych na tyrystorach do dzisiejszych cyfrowych układów sterowanych mikroprocesorowo zaszło wiele zmian konstrukcyjnych, ale zasady działania pozostały takie same.
Natomiast silniki elektryczne projektuje się tak, aby utrzymywały stałą zadaną wartość prędkości oraz optymalną jej regulację przez układy zasilania. Wymaganie to nie mogło być realizowane skutecznie do czasu wprowadzenia przemienników częstotliwości, które umożliwiły płynną i efektywną regulację prędkości silników trójfazowych prądu przemiennego.
Spis Treści:
Płynna regulacja prędkości jest często podstawowym wymogiem z punktu widzenia danego procesu produkcyjnego. Ponadto, stosowanie przemienników częstotliwości pozwala prócz płynnej regulacji prędkości, uzyskać inne korzyści takie jak:
Energia może być oszczędzana w silniku o regulowanej prędkości obrotowej, pozwala to na odpowiedni dobór prędkości zgodnie z potrzebami procesu produkcyjnego w dowolnej chwili czasu (w zależności od potrzeb). Rozwiązanie to ma głównie zastosowanie w przypadku regulacji wydajności pomp odśrodkowych i wentylatorów, gdzie zużycie energii jest proporcjonalne do sześcianu prędkości.
Oznacza to, że jeżeli silnik pracuje z prędkością o połowę mniejszą od nominalnej to pobiera z sieci około 12,5% swej mocy znamionowej.
Dostosowując prędkość silnika do procesu produkcyjnego zyskujemy bardzo wiele. Zwiększamy produkcję, przy jednoczesnym zmniejszeniu tzw. odrzutów i zmniejszeniu zużycia materiału.
Dzięki zastosowaniu przemienników liczba przerw w pracy może być znacznie obniżona. Używanie łagodnego rozruchu powoduje złagodzenie niekorzystnych zjawisk lub nawet ich wyeliminowanie.
Przemiennik częstotliwości nie wymaga żadnej konserwacji. Kiedy jest on używany do sterowania silnikiem powoduje wydłużenie bezawaryjnego czasu pracy urządzeń wchodzących w skład danego układu np.: w sieci wodociągowej zdarzają się tzw. uderzenia wody spowodowane zanikiem zasilania i prowadzą one do uszkodzeń rur i innych urządzeń wodociągowych. Dzięki zastosowaniu przemienników podobne przypadki można wyeliminować.
Rodzaje przemienników częstotliwości stosowanych w układach napędowych:
Większość używanych w przemyśle przemienników częstotliwości jest projektowanych wg dwóch różnych zasad:
Przemienniki częstotliwości z obwodem pośrednim mają przynajmniej jeden obwód pośredni prądu stałego lub napięcia stałego i są nazywane odpowiednio przemiennikami z falownikami prądowymi lub falownikami napięciowymi.
Obwód pośredni przemiennika daje pewną przewagę nad przemiennikiem bezpośrednim, taką jak:
Przemienniki częstotliwości dla wysokich częstotliwości wyjściowych przeważnie są budowane z obwodem pośrednim.
Falowniki bez obwodu bezpośredniego są tańsze niż falowniki z obwodem pośrednim, wiąże się to ze zmniejszoną redukcją wyższych harmonicznych.
W większości przemienników częstotliwości zastosowany jest obwód pośredni napięcia stałego.
Wspólną cechą wszystkich przemienników częstotliwości jest posiadanie układu sterowania, który wykorzystuje sygnały sterujące do załączania i wyłączania zaworów półprzewodnikowych falownika (praca dwustanowa). Przemienniki częstotliwości można podzielić ze względu na przyjętą metodę wzorca przełączania zaworów do kształtowania przemiennego napięcia wyjściowego.
Na rysunku poniżej przedstawiono klasyfikację przemienników częstotliwości w zależności od budowy i metody kształtowania napięcia wyjściowego. Poszczególne podzespoły oznaczono odpowiednio:
Podział przemienników częstotliwości w zależności od metody kształtowania napięcia wyjściowego:
Na świecie występują także przemienniki częstotliwości, które nie posiadają układu (- stopnia) pośredniego. Są to przemienniki, które bezpośrednio przetwarzają napięcie z sieci przemysłowej 50-60Hz i wykorzystywane są do napędów o bardzo dużych mocach (rzędu megawatów), ale o małych częstotliwościach wyjściowych. Ich maksymalne częstotliwości są rzędu 30 Hz.
Napięcie do prostownika dostarczane jest z trzech faz lub z jednej fazy źródła napięcia przemiennego o stałej amplitudzie i częstotliwości (np. 3 x 400 V/50 Hz lub 1 x 240 V/50 Hz), a ich charakterystyczne własności można zilustrować jak niżej:
Jak pokazuje powyższy rysunek trzy fazy napięcia przemieszczają się stale w czasie zmieniając swój kierunek, zaś częstotliwość określana jest przez liczbę okresów na sekundę. Częstotliwość 50Hz oznacza, że występuje 50 okresów na sekundę tj. jeden okres trwa 20 milisekund.
Prostownik przemiennika składa się z diod, tyrystorów lub ich kombinacji. Prostownik składający się z diod jest niesterowalny, a prostownik tyrystorowy jest określany jako sterowany. Jeśli prostownik zbudowany jest z obydwu rodzajów tych elementów to wówczas jest on nie w pełni sterowany - półsterowany.
Diody umożliwiają przepływ prądu tylko w jednym kierunku od anody A do katody K przepływ w innym kierunku jest niemożliwy ze względu na budowę diody. Kontrolowanie przepływu mocy nie jest możliwe jak w przypadku innych półprzewodników. Napięcie prądu przemiennego na wyjściu zasilania prostownika diodowego jest zamieniane na napięcie stałe pulsujące. Jeżeli trójfazowe napięcie prądu przemiennego jest dostarczane do niesterowalnego prostownika trójfazowego, to na jego wyjściu uzyskamy napięcie stałe o mniejszych pulsacjach.
Powyższy rysunek przedstawia niesterowalny prostownik trójfazowy składający się z dwóch grup diod. Jedna grupa składa się z: D1, D3 i D5, a druga grupa z diod D2, D4, D6. Każda dioda z danej grupy przewodzi przez 1/3 okresu (120º).
Poszczególne diody obu grup diod przewodzą kolejno. Po rozpoczęciu przewodzenia przez diodę danej grupy w drugiej grupie nastąpi przełączenie komutacyjne między przewodzącymi diodami po czasie 1/6 okresu (60º). Np.: gdy przewodzi D1 przez 1/3T, wtedy przewodzi D4 przez 1/6T następne D6 przez 1/6T i odwrotnie: D4 - 1/3T, to D5 - 1/6T i D1 - 1/6T.
Diody D1,3,5 przewodzą, gdy amplituda napięcia jest dodatnia. Jeśli napięcie fazy L1 osiąga dodatnią wartość maksymalną, wtedy napięcie na zacisku A osiąga także maksymalną wartość. Dwie pozostałe diody tej grupy mają wtedy wsteczne napięcie polaryzacji wynosi UL2-2 i UL3-3.
Podobna sytuacja występuje przy przewodzeniu grupy diod D2,4,6. Napięcie na zacisku B otrzymuje ujemną polaryzację fazową. Jeśli w danej chwili czasowej L3 osiąga ujemną wartość szczytową napięcia, dioda D6 przewodzi. Dwie pozostałe diody tej grupy mają wtedy wsteczną polaryzację o wartości UL1-2 i UL2-4.
Napięcie wyjściowe prostownika niesterowanego ma inną wartość niż napięcie tych dwóch grup diod. Wartość średnia pulsującego napięcia wyprostowanego dla prostownika typu 3F6D wynosi 1,35 wartości skutecznej napięcia międzyfazowego sieci zasilającej.
W prostownikach sterowalnych diody zastąpione są przez tyrystory. Tyrystor podobnie jak dioda pozwala przewodzić prąd od anody A do katody K z tą różnicą, że tyrystor ma dodatkową bramkę G, na którą podawany jest sygnał sterujący pracą tyrystora. Na bramkę trzeba podać sygnał sterujący, aby tyrystor przewodził prąd. Jeśli przez tyrystor płynie prąd to znaczy, że jest on w stanie przewodzenia i pozostanie w tym stanie do momentu, aż płynący przez niego prąd osiągnie wartość zerową.
Przewodzenie tyrystora nie może być przerwane tylko przez zanik sygnału sterującego podawanego na bramkę. Tyrystory są nie tylko używane w prostownikach, ale również w falownikach.
Układ sterujący bramką tyrystora opóźnia podanie impulsu sterującego przez określony czas w stosunku do fazy napięcia przemiennego dołączonego do obwodu głównego tyrystora.
Opóźnienie to opisane jest parametrem α określającym czas między przejściem przez zero napięcia przemiennego, a rozpoczęciem przewodzenia przez tyrystor. Czas ten wyrażany jest w stopniach kątowych wynikających z okresu napięcia przemiennego. Tyrystory są nie tylko wykorzystywane w prostownikach, ale również w falownikach.
Jeżeli kąt przewodzenia α ma wartość pomiędzy 0º a 90º to układ z tyrystorami połączonymi jak na rys. 3.08, pracuje jako prostownik, natomiast gdy jest on między 90º i 300º jako falownik.
Praca prostownika sterowanego jest zasadniczo taka sama jak prostownika niesterowalnego. Różnica polega na tym, że tyrystory sterowane są kątem wyzwolenia α. Początek przewodzenia tyrystora zaczyna się np. od kąta 30º, natomiast dioda rozpoczyna przewodzenie do punktu za przejściem napięcia przez wartość zero. Pozwala to na zmianę wartości przetworzonego napięcia. Prostowniki sterowalne uzyskują na wyjściu średnią wartość napięcia określoną wzorem:
UAB = 1,35 Usk * cos α
W porównaniu do prostowników niesterowalnych, prostownik sterowalny powoduje większe straty i poziom zakłóceń w sieci zasilania, ponieważ tyrystory wprowadzają do sieci większy prąd bierny wyższych harmonicznych, szczególnie przy krótkotrwałym czasie przewodzenia.
Jednakże zaletą tych układów prostownikowych jest to, że mogą pracować w obu kierunkach, tzn. w czasie pracy falownikowej zwracają energie do sieci zasilającej.
Obwód pośredni w przetwornicy służy do pobierania energii z wyjść prostownika i przekazywania jej po przetworzeniu do falownika, z którego zasilany jest silnik. Obwody te mogą być budowane według trzech różnych zasad zależnie typów prostowników i falowników.
W obecnych przemiennikach z falownikiem prądowym obwód pośredni zawiera duży dławik który jest zasilany z prostownika sterowanego. Dławik transformuje napięcie wyjściowe prostownika o regulowanej wartości na prąd o wartości zależnej od tego napięcia.
Dla falowników prądowych
W aktualnych przemiennikach obwód przejściowy składa się z układu, który jest połączony ze sterowanym prostownikiem. Układ ten przekształca napięcie z prostownika na pulsujący prąd stały o określonym przebiegu. Obciążenie falownika prądowego tj. wartość prądu przepływającego przez obciążenie, określa w tym rozwiązaniu wartość napięcia na tym obciążeniu - silniku.
Dla falowników napięciowych
Układ obwodu przejściowego składa się z filtru zawierającego kondensator i może on być stosowany w obydwu typach prostowników. Filtr ten wygładza napięcie stałe pulsujące prostownika UZ1.
W sterowalnym prostowniku napięcie na wyjściu ma stałą wartość przy danej częstotliwości wyjściowej falownika i podawane jest jako czyste (bez wyższych harmonicznych) na jego wejścia zasilania UZ2.
W prostownikach niesterowanych napięcie na wejściu falownika jest stałe (ze stałą amplitudą). Dla zapewnienia regulacji amplitudy napięcia stałego, na wejściu obwodu pośredniego może być wstawiony przerywacz prądu (ang. chopper), rys. 12. Przerywacz posiada tranzystor, który pracuje jak łącznik powodujący przerwy w przepływie prądu zgodnie z ustalonymi przez obwód sterowania zasadami. Obwód ten pracuje w oparciu o porównanie napięcia odniesienia (referencyjnego) U ref z napięciem za filtrem U V. Różnica między tymi napięciami jest regulowana czasem przez który tranzystor przewodzi i kiedy blokuje przepływ prądu zgodnie z zależnością:
gdzie:
Zmienia to efektywną wartość i kształt napięcia wyjściowego obwodu pośredniego.
Gdy tranzystor przerywacza będzie powodował odcięcie prądu przepływającego przez cewkę obwodu pośredniego, to odłoży się na nim niebezpieczne duże napięcie powstałe wskutek SEM samoindukcji cewki. Aby temu zapobiec i zabezpieczyć tranzystor przed uszkodzeniem, stosowana jest dioda zwrotna. Tranzystor bez diody zwrotnej narażony jest podczas prądu na przepięcia, przepięcia są tym większe im dłuższy jest czas przewodzenia prądu tj. im większa jest wartość kąta przewodzenia α. W sytuacji 2, rys. 3.13 tranzystor jest bardziej narażony na uszkodzenie niż w sytuacji 1.
Filtr obwodu przejściowego wygładza przebieg prostokątny napięcia za przerywaczem. Pojemność filtru i dławik utrzymują stałą wartość napięcia na zasilaniu falownika przy danej częstotliwości jego napięcia wyjściowego. Pośredni obwód może tez zapewniać szereg dodatkowych funkcji takich jak:
źródło :Dr inż. Jerzy Szymański , ELPOL Centrum Elektroniki i Automatyki Sp. z o.o. (www.elpol.biz)